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The purpose of this communication is to establish three theorems about the
convergence of sequences of spline approximations. These theorems have close
analogs in the classical theory of uniform approximation by ordinary poly­
nomials. These analogs are:

1. If, for each n, LII is a linear projection of C(O, 1] onto the subspace PII

of polynomials of degree <;;; n then:Lnl i -+ ,x.

II. If, for each n, Tn is the (nonlinear) metric projection of C(O, 1] onto Pn
then :If- Tn/,I <;;; w(f; n- 1) whenever / EO C(O, 1]. By the metric projection of/
we mean that element of PII for which "/- Tn/ I is a minimum.

III. For each n there exists a linear operator An from C(O, 1] onto PII such
that If- AIIJI; <;;; w(f; n- 1

) whenever / E C(O, 1].

We consider here the simplest case of spline approximation. Let C denote the
Banach space of all continuous functions/ on [0,1] such that/CO) = /(1). The
norm in Cis If I' = max {If(x)l: 0<;;; x ,;;; I}. Let points be prescribed as follows:
0= X o < < XII = 1. In correspondence with these points there is a subspace
5 = 5(xo, , XII) in C whose elements are the cubic splines having nodes at
xo, ... , Xn' That is, S E 5 if and only if s" EO C and each restriction of s to one of
the subintervals [Xi-!, x;] is a cubic polynomiaL The dimension of 5 is n. For
eachf E Cthere is a unique element Lfin 5 \vhich interpolates tofat the nodes:
f(x;) = (Lf) (Xi) for i = 0, ... n. The operator L thus defined is a linear projection
of C onto 5. Reference [1] is perhaps the most convenient source of information
about these matters.

Now consider a sequence of such nodal arrays xl") (i = 0, ... , n; n = 1,2, ...).
There corresponds a sequence of subspaces 5n and a sequence ofprojections L II•

We ask: Under what conditions on the nodes will it be true that sUPnilLn!: < oo?
The ultimate desideratum would be a simple formula for calculating ILL in
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terms of the nodes. We have not succeeded in discovering such a formula, and
indeed there is no reason to believe that one exists. Instead, we have sought
upper and lower bounds on !IL!! which are as close as possible.

In order to judge the accuracy of these estimates of IJDI, we consider the
following four test cases:

Test Case 1. All n subintervals are of equal length, l/n. We obtain then
1 < :!Ln!1 < 7/4. In this case, the best upper bound (independent of n) is
(3'\/3 + 1)/4. (This result will appear elsewhere.)

Test Case 2. There are n - 1 intervals of length (n + 1)/n2 and one interval
oflength l/n2 • We obtain the inequality

(3)1/2 (n + 1)2 _ 1 ,;::IL I' .,;:: ~ (n + 1)2 1
9 n+2 "", nl""2 n+2 + .

In this case IILn:i -+ ex; as n -+ 00. By the Uniform Boundedness Theorem, there
must exist an f E C such that iiLnfl: is unbounded. In [2], Nord investigates
such an example and produces a function f and a point Xo such that
(Lnf)(xo) -+ + 00.

Test Case 3. Let n = 2k -+- 1, and let -t < () < 1. Determine h by the equation
h + 2()h + 2()2 h + ... + 2()k h = 1, and let the division of the interval [0, 1] be
as follows:

[--------­
o

Our bounds yield the inequality

1 < LLn:1 < 19(2() - 1)-1.

In this case sUPnilLnli < 00, in spite of the fact that the ratio of the largest to the
smallest subinterval becomes infinite.

Test Case 4. This is the same as Test Case 3, except that °< () < lOur
smallest upper bound becomes infinite, and our largest lower bound remains
finite. Hence we are unable to determine whether sup IILnl! < ao.

The bounds on I:Lj' are expressed in terms of the following quantities, which
depend only on the spacing of the nodes:

hi = Xi - Xi-I

h = max hi
I -<I "'n
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I1l = max 111 1
15.i "'n

:x = max :XI
l::;i :5:.n

A r h-1 I h-1 h-1j h- I }I = max l.PI-l i , Pi i+1 - qi I ,ql+l 1+1

ill = max hl(ll,{i-l + ill;)
jc::,i';;n

f3 = min max {hi' h;+d·
1 si Sn

THEOREM I. The following bounds apply to L:

(A) i L:,::;; ~cxh + I

(B) ILli '::;;;M -7- I

(C) ;ILI> I

(0) ILl (3)1/2 _ I
,: > 36 m

(E)
, (3)1/2
ILl >~9-cxf3-I.

THEOREM 2. ForallfE C, dist (j,5),::;; 18 w(J;h).

THEORBI 3. There is a linear operator A: C -';>- 5 such that [If - AI', ,::;;
18w(J; h)for allf E C.

Proof of Inequality (A). Let f be any element of C such that I'n ,::;; I, and
put s = Lj, AI = s'(X;),h = f(x l ). For each i = I, . __ , n the following equation is
valid [1, p. 12]:

q;A.;-1 + 2AI +PIAw = 3p;lli~1(h-l -h)

+ 3qi hi l (h - h-I)' (1)
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Letj be an index such that maxi lAd = IAJI. Then from (1),

21\1 < qJIAJ-,1 +PJIAJ+lI + 3IPJ hj!dJ+1 + (qJhj' - PJhj!,)!J - qJhj'fJ-d

< (qJ +PJ) IAJI + 3(Pi hj!1 -+- IqJhj' - PJ hj!d +qJhj')

= IAJI + 6exi

< IAil + 60(.

This proves that for all i, IA;\ < 6ex. Now on the interval [xi_"x;] the spline
function is given by the following formula

(2)
where

Ai(x) = hi3(h i + 2x - 2xi_,)(x - XI)2

Bi(x) = hi3(hi - 2x -+- 2x;)(x - XI_,)2

Ci(x) = hi2(x - xl_,)(x - Xi )2

Di(x) = hi2(x - xi)(x - Xi-If.

We observe that AI;;;' 0, Bi ;;;. 0, Ci ;;;. 0, D i < 0, Ai + Bi = 1, and C I - D i
= hi'(x, - x)(x - Xi-I) < t hi' Thus, since YI. < 1 and IAil < 6ex,

Is(X) I< 1 + t ex hi < 1+ t exh.

It follows that liLfli < 1 + t ex h whenever lifli < 1, and that IILlI < 1 + t ex h.

ProofofInequality (B). For each indexj = 1, ... , n there is a spline function
sJ such that sJ(x,) = 8/ for i = 1, ... , n. This spline function is termed the
'jth cardinal function"; in terms of it, the spline operator L can be expressed
in the form Lf= "i':H f(xj)sJ. From this it follows that IlL!! = ligli, where
g(x) = "ij=, IsJ(x)l. We define V = (Si)' (XI) and IN:I = max, 5:15:nIVI. The
numbers A/, ...,A/ satisfy the system of equations

U= 1, ...,n)

ASSERTION 1. For each k = 0, 1,2, ... , [nj2] the inequality IVI < 2-k liAJPis
valid for pairs (i,j) satisfying Ii - jl > k. (Computations involving the indices
are carried out in arithmetic modulo n because of periodicity.) In order to
prove this assertion, we use induction on k. For k = °the inequality is trivial.
If the assertion is true for an index k ;;;. 0, then it is true for k + 1. Indeed,
suppose that Ii - jl > k + 1. Then Ii + 1 - jl > k and Ii - 1 - jl > k. Also
Ii - jl > 1. Hence R/ = 0. From Eq. (3) we have 21VI = Iqi AL, +PI Ai+11
< max {IAi-d, IA{+,I} < 2-k ilAJi'. Thus IVI < 2-k -'i',VIJ.

7
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ASSERTION 2. )il: < 3Aj' In order to establish this, let k be an index such that
/.VI = :i.:V::. From Eq. (3), we have 21:.\j; = 21.\/1 = IR/ - Pk.\k+1 - qk.\k-d
<IR/I+(Pk+qk) max {1.\{ql,I.\[-d}< IR/I+ '.\jl. Thus l.\j,j<maxdR/!.
Now, all the numbers R1j, ... ,R/ vanish with the exception of these three:

IR~_ll = 3pj-l hi l < 3.1 j :

IR/i = 3lpjhj~1 - qjhjll ,;:; 3Aj ;

IR)+II = 3qj+1 hj~1 < 3Aj.

ASSERTION 3. Lj~l 1.\/1 < 3Mt . For the proof, we use Assertions 1 and 2 as
follows:

n

L IVI = IVI + 1.\:-11 + 1.\:+11 + 1.\:-21 -7- 1.\:+21 --,- ...
j~1

< 3(At --,- A t- I + Ai+l + tAt- 2 + tAt+2 --:- ., .).

Now for the proof of Inequality (B), let x be any point of [0, 1]. Let i be an
index such that Xt- I < x < Xt. An elementary calculation shows that 0 < Ct(x)
< (4/27)ht and 0 < -Dlx) < (4/27)ht. Thus by Eq. (2) and Assertion 3,

n

g(x) = L IsJ(x)1
J~I

n

= L IS{-I At(x) + S/ B,(x) + .\{-I C,(x) -+- V DtCx)j
J~I

n n

< At(x) + Bb) -:- C,(x) L IA{-II - Dt(x) L IVI
j~1 J~l

< I + 3(Mt_1 + Mt)max{Ct(x),-Dlx)}

< I -L 4/9 ht(Ml-l -'.... M i ) < I -+- 4/9 M.

Inequality (C) is trivial since Ll = 1.

Proof of Inequality (0). Select an index j such that m j = m. Then either
hJhJ~1 =m or hJ+lhjl =m, and without loss of generality we assume the
latter. Consider now the jth cardinal spline function sJ, and the numbers R/,
A/, IW:I as defined in the proofoflnequality (B). In the following, superscriptsj
will be omitted for simplicity.

ASSERTION 4. 11.\11 < 3m(1 + m)-Ihjl. In order to prove this, we start with
Assertion 2: 11.\11 < 3AJ• From the definition of m, we have h,h;';1 < m and
hl+ 1hjl < m for all i. Since Pt = htl(ht -+- ht+ l ) = 1/(1 + hI+! hjl), we see that
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1/(1 + m) ,,;;;; PI";;;; mj(l + m). The same inequality is true for all the coefficients
q" Thus from the definition of AI we have A J ,,;;;; m(l +m)-l max {hjl, hj~l}

= m(l + m}-I hjl.

ASSERTION 5. \AJ- 2 1 ,,;;;; !IiAII. This follows from Assertion 1.

AsSERTION 6. Define the functions P(m) = 3m-3(m3 +2m2 - 2m - 2) and
Q(m) = m-2(4m2 + 9m + 6). Then hJ IAJ- 21;;;. P(m) - Q(m) 0, where 0 = hJmax
{I\I, lAm I}· In order to prove this, replace i by j in Eq. (3) and solve (3) for
AJ- I . The result is AJ- I = qjl(RJ - 2AJ - pJAJ+J). Now replace i by j - 1 in
Eq. (3) and solve for AJ- 2• We obtain

hJ IAJ - 2 1 ;;;. -hJAJ- 2 = hJqi~I(-RJ-1 +2AJ- 1 +PJ-I AJ}.

In this equation replace AJ- I by its value computed above, express RJ- I and RJ
by their values, and finally replace AJ and A1+1 by their upperbound, Ohjl.
The result is

hJIAj - 2 1 ;;;. hJqj~I[2qjl(3qjhil- 3PJhj~l) - 3PJ-I hi l

_(4qjl_PJ_I)Ohil_2qjlpJOhjl].

SinceqJpjl =hJ+Jhjl =m,PJ-I = l-qj-hqi l =(m+ l)m- I,PJ-1 ;;;.(m+ I)-I,
and qj~1 ;;;. (m + l)m- l , we obtain

hJIAJ- 2 1 ;;;. (m + 1)m-I{3 - 6m-2 + 3(m + 0-1

- [4(m + l)m-1- (m + 0-1 + 2m-I ] O}

= 3m-3(m 3 + 2m2 - 2m - 2) - m-2(4m2 + 9m + 6)0.

ASSERTION 7. Ifm;;;. 2, then4P(m) - Q(m) > 6m(1 + m)-I. In order to prove
this, it is enough to prove that 4m3(l + m)P(m) - m3(1 + m) Q(m) - 6m4 > O.
The expression on the left turns out to be 2m4 + 23m3

- 15m2
- 54m - 24.

and this is positive when m ;;;. 2.

ASSERTION 8. If m;;;. 2, then max {lAJ I.IAJ+.I} > (4hJ)-I. If this inequality is
false, then 0,,;;;; land by Assertions 6, 7,4, 5 we have the following contradiction :

IAJ - 2 1;;;. [P(m) - Q(m)O]hi l

;;;. [P(m) - !Q(m)] hi l

> tm(l + m)-I hi l

;;;.!IW.

ASSERTION 9. IILII;;;. (v3j36)m -1. In order to establish this, letfdenote a
function such thatfj = 1, It = -1 when i:j:j, and IIfll = 1. Put g =Lf Since
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Ll = l,g=2s-1.(Heresisthejthcardinalfunction.)Hence:L:;;., Lf g.
On the interval [x j , xhtl,

1g(x) 1= IJ~Aj+dx) +fHl Bj~l(X)+g/ Cj-'-l(X) + g;,l Dj~l(X)1

= !Aj-'-\(x) - BH(x) -7- 2'\j CH(x) + 2\-1 Dj-'-\(x)i.

If I'\jl > I'\j+tl, then we take x = xj + thj-'-\ with t = 1- i 'V3, and use Asser­
tion 8 to write

Ig(x) I > 21'\jIICj -d (x)l- 21'\j-d IDj-'-l(X)j-jAj+l(x) - Bj-'-l(X)1

> 21'\jl [Cm(x) + Dj+l(x)] - I

> (2h)-I(V3hj_1iI8) - I

= (\/3/36)m - 1.

On the other hand, if I'\m j > 1,\1, we take t = t + i v/3 and write

Ig(x)j > 21'\mII Dm(x)l- 2j'\jIICj +1(x)l- 1

> (\/3(36)m - 1.

ProofofInequality (E). Letjbe an index such that IXj = IX. Letfbe an element
of C such that iII! = I,jj = sgn(qjhjl - Pjhj~I),fH = -1, andfH = 1. The
system of Eq. (1) is of the form A'\ = b, where ,\ and bare n-tuples and A is an
n x n matrix. If the vector norm is 1'\ 1= max I'\d, then the matrix norm is
!iAI: = maxi Lj IAul· Hence from the inequality Ib'I <: 'A:: :,'\, we obtain

'i,\'l> ':b ,'I A!, > bj,-'max (qi + 2 +Pi) = 21X.
i

Now select an index k such that j'\k! = 1;'\:. We consider two cases. First, if
hk > hk+1, then hk> 13. We examine sex) on [Xk-I,xd, using Eq. (2). The result is

!s(x)j > j'\kIIDk(X)I-I'\k-t1ICk(x)I-IAk(x)j -jBix)1

> I'\k[ [-Dix) - Ck(x)] - 1.

We take x = Xk-l ...:.. ehk with e= 1 + i v/3and obtain

ilL!, > I:LI: = : s': > Is(x)1 > (21X)[hk ( y'3/18)] - I > (v/3/9) IXI3 - 1.

In the second case, hk +1 > hk , so that hk-'-l > p. Examining sex) on the interval
[xk,xk+d, we obtain the bound

Is(x)1 > l'\kIICk-l(X)I-I'\k+lIIDk-'-1(X)I-IAk+1(X)1

-IBk~l(X)1

> I'\kl [Ck-1(X) + Dk-'-l(X)]- 1.
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Ifx = XU! - ()hk+1, then as before, :IL:I;;. 2oc[hk + 1(V3/18)] - 1 ;;. (V3j9)ocf3 - 1.

Proofof Theorem 2. Givenfand h > 0, we define

1fx+h!2
g(x) = h x-h!2 f(t) dt.

Since f is continuous, g is continuously differentiable. Furthermore, g'(x)
= (1/h)[f(x -+- h/2) - f(x - h/2)], whence ;!g'~1 < (ljh)w(f; h). From the
equation

1 fX+h!2
g(x) - f(x) =~I [f(t) - f(x)] dt

I x-h!2

we obtain j'g - II < w (f; h). By a Lemma proved below, the spline s = Lg
has the property :'g-s'I.;;;07!2)hw(g';h). From the obvious inequality
w (g'; h) < 2'lg'ii we obtain !ig - s'! < 17h'ig'll < 17w (f; h). Thus

dist (f, S) < Ilf - sj:

< U-g![ + ig-s:'

< 18w(f;h).

Proofof Theorem 3. It is only necessary to observe that the function s =. Lg
in the preceding proof depends linearly uponf

The following Lemma, with the constant 76 in place of 17/2, was given by
Sharma and Meir in [3, p. 763]. Then, with the constant 21/2 it was proved by
Ahlberg, Nilson, and Walsh in [1, p. 27].

LEMMA. Let f' E C and s = Lf Then 11f' - s'li < (17j2)w(f';h) and IIf- sll
< (17j2)hw(f';h).

Proof The second inequality is a consequence of the first. See [1, p. 27].
In order to prove the first inequality, we start with the Eq. (1), and use the

mean-value theorem to write

qlAi-l + 2Ai + PIAI+1 = 3PJ'(gl) + 3qJ'(gi-l)'

For convenience put ai = Ai - f'(XI)' Then

qlal-l + 2al +Piai+l = "R.H."
=. 2p;[f'(gl) - f'(x l)] + 2qi[f'(gi-l) - f'(x l)]

+Pi[f'(gl) - f'(Xi-'-I)] + qi[!'(gi-l) -f'(Xi - 1)]

Suppose that j is the index of the largest lad. Then

21aJI <gJlaJ-I! +PJlaJ+11 + IR.H.\ <qJlaJI

+PJlajl + \R.H·I·
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Hence IOjl ,,;;; IR·H.I ,,;;; 3w (f'; h). From this point on, the proof is the same as
in [1].

The following questions remain open:

1. What conditions on the nodes are equivalent to the inequality
sUPn~ILnll < co?

2. Is there a linear projection A of C onto S such that ,if- Af'
'" cw (f; h)?

3. What is the linear projection of minimum norm from C onto S? Is it
unique?
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